Tech Schools mediating school-industry

STE(A)M partnerships using design thinking

Dr Aimé C. Sacrez La Trobe University, Bendigo a.sacrez@latrobe.edu.au

Research into School-Industry Partnerships

- School-industry partnerships provide authentic issues for STEAM projects
- Process needs to be coordinated to be sustainable for schools and industry (Australian Industry Group, 2017)
- Successful partnerships are scalable, brokered, include professional learning and have real world context aligned with curriculum (Education Services Australia, 2018, p.15)
- Tech Schools provide multiple approaches to building school-industry partnerships (Sacrez, 2020)
- Design thinking stages provide a structured approach to authentically connecting with industry

Australian Industry Group. (2017). *Strengthening school-industry STEM skills partnerships: Final project report*. Retrieved from http://cdn.aigroup.com.au/Reports/2017/AiGroup_OCS_STEM_Report_2017.pdf

Education Services Australia. (2018). *Optimising STEM industry-school partnerships: Inspiring Australia's next generation final report*. Retrieved from http://www.educationcouncil.edu.au/site/DefaultSite/filesystem/documents/Reports%20and%20publications/Publications/Optimising%20STEM%20Industry-School%20Partnerships%20-%20Final%20Report.pdf

Sacrez, A. (2020). Tech Schools, mediating contexts for new pedagogies. In M. A. Peters & R. Heraud (Eds.), *Encyclopedia of Educational Innovation* (pp. 1-8). Singapore: Springer Singapore.

Bendigo Tech School at La Trobe University

High-tech learning hub for STE(A)M capabilities

Levels of Impact for Different Tech School Activities

Shallow impact Deep impact

- Student engagement in Tech School programs and extra curricula activities
- Supporting teachers to adopt new pedagogies through immersive professional development and resource sharing
- Fostering community/industry involvement in the development of school projects
- Promoting a reformation to the delivery of the curriculum from subject-based to interdisciplinary project-based learning in schools

Bendigo Tech School Design Thinking Stages

Enterprise Identify specific knowledge and capabilities relevant to key industries

Empathise Collect information about the potential user and their problem to be solved

Define Create a problem statement based on understandings of the user's needs

Ideate Generate a high volume of diverse and creative ideas, then refine to one solution

Prototype Construct a physical representation to help conceptualise the solution

Test Share the prototype with others to gain feedback for modification and redesign

Present and reflect Communicate the solution to the problem to an audience through a pitch

Using design thinking to integrate industry links into STEAM programs

Design stages	Industry-Linked Activities	Key ideas for teachers
Enterprise	Connect with an industry	Evaluate opportunities from curriculum and real-world issue
	Co-design program	Research industries, contact and gauge levels of commitment
		Utilise an intermediary organisation or join existing programs
Empathise	Interviews & excursions	Classroom discussion and student research to design questions
Define	Guest speakers & student research	Virtual tours, zoom and pre-recorded interview are digital alternatives
		Utilise industry web sites and resources to examine the issue
Ideate	Explore R & D processes used in industry	Utilise creative and critical thinking capabilities from the curriculum
Prototype	Build low and high-tech prototypes	Industry tools and technologies can require training through PD and mentoring
Test	Market test and materials test	Evaluation criteria reflects industry practice and subject curriculum
Present	Show case event & student pitch	Invite industry and community, lever digital platforms such as video and website
Reflect	Evaluation of the product & process	Consider the sustainability of the product and the process
Iterate	Next stage of designing and prototyping	Select teams for follow up visit to industry for advice and training

Tech School Co-design workshop with industry

Workshop theme: New energies, food and fibre

- > Introduction to the design thinking process
- > 10-minute design challenge using sensors
- > Participants guided through the process of empathising, defining, ideating, prototyping
- Each group presented
- > The final program required students to design an IOT farming solution

Connect: Co-design with teachers from different subject areas, industry representatives and students

Design: Use the design thinking process to develop the unit as a prototype for teachers to test

Evaluate: Student prototypes, student learning, the design of the unit/program and teachers' own professional learning

Thales Design Competition

Integrating an industry competition in a school

- Student teams used sensor technology to "make life better or to keep us safer"
- > Workshops and technology mentors were provided by the Tech School
- Some schools embedded the project into their STEM subject
- > Prototype solutions were presented to a panel of industry experts through a five-minute pitch
- > The winning team then refined their prototype and presented at a state-level pitch
- > Some teams continued working on their prototypes to submit for a young inventors award

Integrate: Tech School competitions are curriculum-aligned which promotes interdisciplinary units across all school subjects

Showcase: Provide a public platform for young people to present to industry and community

Replicate: The design thinking process is a template which can be used by teachers to design their own industry-based design challenges

TECH SCHOOLS

Victorian Department of Education and Training

Take away

- Involve industry and community, from co-designing to showcasing student solutions
- Tech Schools can provide resources and training to mediate between your school and local industries
- The Design Thinking stages provide a framework to connect with industry at key points of a STEAM project

Lets connect!

Contact Aimé C. Sacrez a.sacrez@latrobe.edu.au

Tech School Workshop	ROOM 1
11.25 - 12.15	Ember Chittenden & Robbie Philpott Integrating Real-World Skills Into the Classroom: Using an Industry Co-Design Process